next up previous contents
Next: First order mass fraction Up: Spherical enclosures Previous: Conduction-diffusion   Contents

Creeping flow

The solution for $\mathbf{u}_0$ and $p_0$ (creeping flow) is obtained by the method of §B.4.

Here the body force is

$\displaystyle \mathbf{f}_0$ $\textstyle =$ $\displaystyle \mathbf{I}_0 - \mathbf{B}_0$ (8.28)
  $\textstyle =$ $\displaystyle \mathbf{0} - \frac{T_0+Nm_0}{1+N}\mbox{\boldmath$\hat{\jmath}$}= -x\mbox{\boldmath$\hat{\jmath}$}$ (8.29)
  $\textstyle =$ $\displaystyle -r\sin^2\theta\sin\phi\cos\phi\,\mbox{\boldmath$\hat{r}$}
- r\sin\theta\cos\theta\sin\phi\cos\phi\,\mbox{\boldmath$\hat{\theta}$}$  
    $\displaystyle - r\sin\theta\cos^2\phi\,\mbox{\boldmath$\hat{\phi}$}.$ (8.30)

The scalar defining its scaloidal part satisfies
$\displaystyle \nabla^2\mbox{$\mathcal S$}[\mathbf{f}_0]$ $\textstyle =$ $\displaystyle \mbox{\boldmath$\nabla$}\cdot \mathbf{f}_0 = 0$ (8.31)
$\displaystyle \mbox{\boldmath$\hat{r}$}\cdot\mbox{\boldmath$\nabla$}\mbox{$\mathcal S$}[\mathbf{f}_0]$ $\textstyle =$ $\displaystyle \mbox{\boldmath$\hat{r}$}\cdot\mathbf{f}_0,\quad(r=\mbox{$\frac{1}{2}$})$  
  $\textstyle =$ $\displaystyle -\frac{1}{4}\sin^2\theta\sin\phi\cos\phi$  
  $\textstyle =$ $\displaystyle -\frac{1}{24}P_2^2(\cos\theta)\sin 2\phi.$ (8.32)

This is
\begin{displaymath}
\mbox{$\mathcal S$}[\mathbf{f}_0] = -\frac{1}{4}r^2\sin^2\theta\sin 2\phi,
\end{displaymath} (8.33)

so that
$\displaystyle \mathbf{f}_0^{(S)} = \mbox{\boldmath$\nabla$}\mbox{$\mathcal S$}[\mathbf{f}_0]$ $\textstyle =$ $\displaystyle -\frac{1}{2}(r\sin^2\theta\sin 2\phi\,\mbox{\boldmath$\hat{r}$}
+ r\sin\theta\cos\theta\sin 2\phi\,\mbox{\boldmath$\hat{\theta}$}$  
    $\displaystyle + r\sin\theta\cos 2\phi\,\mbox{\boldmath$\hat{\phi}$})$ (8.34)

and
$\displaystyle \mathbf{f}_0-\mathbf{f}_0^{(S)}$ $\textstyle =$ $\displaystyle -\frac{1}{2}r\sin\theta\,\mbox{\boldmath$\hat{\phi}$},$ (8.35)

which is obviously solenoidal, as expected.

Clearly

\begin{displaymath}
\mbox{$\mathcal P$}[\mathbf{f}_0-\mathbf{f}_0^{(S)}] = 0,
\end{displaymath} (8.36)

since
\begin{displaymath}
\mbox{\boldmath$\hat{r}$}\cdot(\mathbf{f}_0-\mathbf{f}_0^{(S)}) = 0.
\end{displaymath} (8.37)

The problem for the scalar defining the toroidal part of the body force is:

$\displaystyle {\mathcal L}^2\mbox{$\mathcal T$}[\mathbf{f}_0-\mathbf{f}_0^{(S)}]$ $\textstyle =$ $\displaystyle -\mathbf{r}\cdot\mbox{\boldmath$\nabla$}\times(\mathbf{f}_0-\mathbf{f}_0^{(S)})$ (8.38)
  $\textstyle =$ $\displaystyle r\cos\theta = rP_1^0(\cos\theta).$ (8.39)

The solution is
$\displaystyle \mbox{$\mathcal T$}[\mathbf{f}_0-\mathbf{f}_0^{(S)}] = -\frac{1}{2}r\cos\theta.$     (8.40)

To illustrate the decomposition of the vector field here, the force-lines of $\mathbf{f}_0$, $\mathbf{f}_0^{(S)}$ and $\mathbf{f}_0^{(T)}$ in the plane $z=0$ are plotted in figure 8.3.

Figure 8.3: Decomposition of the vector field $\mathbf{f}_0$ into scaloidal, $\mathbf{f}_0^{(S)}$, and toroidal, $\mathbf{f}_0^{(T)}$, parts. The fields are represented by their force-lines in the plane $z=0$, the contours of $x^2/2$, $(x^2-y^2)/2$ and $(x^2+y^2)/4$.
\begin{figure}\centering\begin{picture}(120,180)(-60,-60)
\put(0,0){\makebox(0,0...
...,-50){\makebox(0,0)[br]{\LARGE$\mathbf{f}_0^{(T)}$}}
}
\end{picture}\end{figure}

Since, in this case, all three vector fields are plane and solenoidal, the force-lines can be represented as the contours of scalar functions. The functions are $x^2/2$, $(x^2-y^2)/4$ and $(x^2+y^2)/4$, respectively.

The problem for $\mbox{$\mathcal T$}[\mathbf{u}_0]$ is:

$\displaystyle \nabla^2\mbox{$\mathcal T$}[\mathbf{u}_0]$ $\textstyle =$ $\displaystyle \mbox{$\mathcal T$}[\mathbf{f}_0-\mathbf{f}_0^{(S)}] =
-\frac{r}{2}P_1^0(\cos\theta)$ (8.41)
$\displaystyle \mbox{$\mathcal T$}[\mathbf{u}_0]$ $\textstyle =$ $\displaystyle 0,\quad(r=1/2).$ (8.42)

The solution is:
\begin{displaymath}
\mbox{$\mathcal T$}[\mathbf{u}_0] = \frac{r}{80}\left(1-4r^2\right)P_1^0(\cos\theta).
\end{displaymath} (8.43)

The other scalars, $\mbox{$\mathcal P$}[\mathbf{u}_0]$ and $s$, vanish.

Thus,

$\displaystyle p_0$ $\textstyle =$ $\displaystyle -\mbox{$\mathcal S$}[\mathbf{f}_0] = \frac{r^2}{2}\sin^2\theta\sin\phi\cos\phi$ (8.44)
$\displaystyle \mathbf{u}_0$ $\textstyle =$ $\displaystyle \mbox{\boldmath$\nabla$}\times\mbox{$\mathcal T$}[\mathbf{u}_0]\mathbf{r} =
\frac{r}{80}\left(1-4r^2\right)\sin\theta\mbox{\boldmath$\hat{\phi}$}.$ (8.45)

The pressure is plotted in the plane of spanwise symmetry, $z=0$, in figure 8.4.

Figure 8.4: Zeroth order pressure, $p_0$, (8.46) in the plane $z=0$. The maxima are in the upper-right and lower-left quadrants. Contour levels at 0.01, 0.1(0.1)0.4, 0.6(0.1)0.9, 0.99 of range.
\begin{figure}\centering\begin{picture}(80,76)(-40,-36)
\put(0,0){\makebox(0,0){...
...w$} $x$}
% bbllx=54, bblly=134, bburx=532, bbury=373\}
\end{picture}\end{figure}

Since the velocity is purely toroidal, the pressure is due solely to the scaloidal part of the body force. The force-lines of $\mathbf{f}^{(S)}$ and the isobars, displayed in figures 8.3 and 8.4, are obviously related: they are mutually orthogonal.

The pressure is very simply expressed in terms of Cartesian coordinates:

\begin{displaymath}
p_0 = \frac{xy}{2}.
\end{displaymath} (8.46)

The fact that it is independent of $z$ suggests--consider the spanwise component of the equation of motion (2.54)--that $w_0=0$. This is the case:
\begin{displaymath}
\mathbf{u}_0 = \frac{4r^2-1}{80}(y\mbox{\boldmath$\hat{\imath}$}-x\mbox{\boldmath$\hat{\jmath}$}).
\end{displaymath} (8.47)

Notice that in the horizontal plane through the centre ($\sin\phi=y=0$) the velocity is purely vertical and identical to the fully developed flow in a cavity of circular horizontal section (7.65) except for a factor of $\frac{2}{5}$. Since $\mathbf{u}_0$ is independent of $\phi$, the contours of $v_n^{\circ}$ for $\mbox{$\mathcal S$}=1$ in figure 7.6 can also be interpreted as contours of the creeping speed in any plane passing through the $z$-axis of the sphere.


next up previous contents
Next: First order mass fraction Up: Spherical enclosures Previous: Conduction-diffusion   Contents
Geordie McBain 2001-01-27