next up previous contents
Next: Introduction Up: Vapour transport across gas-filled Previous: Preface   Contents


Nomenclature

$\mathcal A$
vertical aspect ratio (reduced height) of cavity
$\mathsf{A}$
arbitrary diffusivity tensor
$B$
Spalding's driving force for mass transfer, $\exp(-\varPhi )-1$
$b$
characteristic length, dimensional width of cavity
$C$
coefficient of Dirichlet term in Robin boundary condition
$c$
constant of integration
$c_{p}$
isobaric specific heat capacity
$D$
binary diffusivity
$d$
characteristic length of $V$ in §2.6.1
$E_K$
truncation error
$\hat{e}$
arbitrary unit vector
$\mathbf{f}$
body force term in Stokes equation
$\mathbf{g}$
gravitational acceleration, $-g\mbox{\boldmath$\hat{\jmath}$}$
Gr
(thermal) Grashof number, $g\beta\Delta T_*b^{3}/\nu^{2}$
$h$
specific enthalpy
$h_{fg}$
specific heat of vaporization
h.o.t.
higher order terms
$\hat{\imath}$
unit transverse vector
$I$
coefficient of Neumann term in Robin boundary condition
$i$
index for species in a multicomponent mixture
$\hat{\jmath}$
unit vertical vector
$\mathbf{j}_*$
mass flux of vapour relative to $\mathbf{u}_*$
$K$
number of evaluated terms in a truncated series
$\hat{k}$
unit spanwise vector
$k$
index for terms in a series
$Le_{A}$
vapour Lewis number, $\lambda/\rho c_{pA} \delta$
$M$
molar mass
$m$
reduced vapour mass fraction, $(m_*-m_{*r})/\Delta m_*$
$N$
buoyancy ratio, $\zeta\Delta m_*/\beta\Delta T_*$ number of species in a mixture in §2.6.1
$\hat{n}$
unit normal vector, positive outward from fluid phase
$\mathbf{n}_*$
absolute mass flux of vapour
$Nu$
Nusselt number, $-\mbox{\boldmath$\hat{\imath}$}\cdot\mathbf{e}_*b[1-\exp(-\varPhi _T)]/
\lambda\Delta T_*\varPhi _T$
$\mbox{$\mathcal P$}[\mathbf{v}]$
scalar defining the poloidal part of $\mathbf{v}$
$P_n^m$
function defined by (B.6)
$p$
reduced pressure,
$(p_*+\rho gy_*)/\rho g(\beta\Delta T_*+\zeta\Delta m_*)b\mbox{$\mathcal A$}$
Pr
Prandtl number, $\nu\rho c_{p}/\lambda$
$\mbox{\textit{Pr}}_r$
reference Prandtl number, $\nu\rho c_{pr}/\lambda$
$\mbox{\textit{Pr}}_I$
interdiffusion Prandtl number, $\nu\rho(c_{pA}-c_{pB})(1-m_{*r})/\lambda$
$\mathbf{r}$
reduced position vector, $\mathbf{r}_*/b$
$r$
reduced spherical coordinate, $\vert\mathbf{r}\vert$
Ra
(thermal) Rayleigh number, GrPr
$\mathit{Re}$
Reynolds number
$\mathcal S$
spanwise aspect ratio (reduced span) of cavity
$\mbox{$\mathcal S$}[\mathbf{v}]$
scalar defining the scaloidal part of $\mathbf{v}$
$S$
level surface of arbitrary scalar field
$s$
mesh stretching factor in §5.1.5
arbitrary scalar field in §2.6.1
Sc
Schmidt number, $\nu/D$
Sh
Sherwood number, $-\mbox{\boldmath$\hat{\imath}$}\cdot\mathbf{n}_*b/\rho D\varPhi $
$\mbox{$\mathcal T$}[\mathbf{v}]$
scalar defining the toroidal part of $\mathbf{v}$
$T$
reduced temperature, $(T_*-T_{*r})/\Delta T_*$
$\mathbf{u}$
reduced velocity, $\mathbf{u}_*\nu/g(\beta\Delta T_*+\zeta\Delta m_*)b^2$
$u$
reduced transverse component of velocity, $\mbox{\boldmath$\hat{\imath}$}\cdot\mathbf{u}$
$\mathcal V$
term of an inner matched asymptotic expansion
$V$
volume enclosed by level surface, $S$
$\mathbf{v}$
arbitrary vector field
$v$
reduced vertical component of velocity, $\mbox{\boldmath$\hat{\jmath}$}\cdot\mathbf{u}$
$w$
reduced spanwise component of velocity, $\mbox{\boldmath$\hat{k}$}\cdot\mathbf{u}$
$x$
reduced transverse coordinate, $\mbox{\boldmath$\hat{\imath}$}\cdot\mathbf{r}$
$y$
reduced vertical coordinate, $\mbox{\boldmath$\hat{\jmath}$}\cdot\mathbf{r}$
$z$
reduced spanwise coordinate, $\mbox{\boldmath$\hat{k}$}\cdot\mathbf{r}$

Greek symbols

$\beta$
thermal coefficient of cubic expansion
$\gamma_{ij}$
component of metric tensor
$\varDelta $
inner gauge function in a matched asymptotic expansion
$\Delta$
characteristic difference
$\delta$
outer gauge function in a matched asymptotic expansion
$\zeta$
vapour coefficient of cubic expansion
stretched coordinate for region near front wall in §7.4.2
$\eta$
spherical coordinate: colatitude, $\arctan(\sqrt{x^2+z^2}/y)$
$\theta$
spherical coordinate: colatitude, $\arctan(\sqrt{x^2+y^2}/z)$
$\lambda$
thermal conductivity
$\varLambda $
latent heat factor, $h_{fg}/c_{pA}\Delta T_*$
$\mu$
(dynamic) viscosity
$\nu$
kinematic viscosity
$\xi$
stretched coordinate for region near hot wall
$\rho$
density
$\sigma$
function defined by (4.29), appearing in (4.27)
$\upsilon$
spherical coordinate: azimuth, $\arctan(y/z)$
$\varPhi $
mass transfer rate factor, $\ln[(1-m_{*r})/(1-m_{*r}-\Delta m_*)]$
$\varPhi _T$
thermal mass transfer rate factor, $\varPhi (\mbox{\textit{Pr}}_r+\mbox{\textit{Pr}}_I)/\mbox{\textit{Sc}}$
$\phi$
spherical coordinate: azimuth, $\arctan(x/y)$
$\varphi$
test function for variational form of Navier-Stokes equation
$\psi$
vertical component of solenoidal vector potential for $\mathbf{u}_{\perp}$
Stokes's stream-function in §8.2
$\varOmega $
rotational speed
$\Omega$
domain, with boundary $\partial\Omega$

Superscripts

$\hat{}$
unit magnitude
$\bar{}$
mean
$\tilde{}$
transformed
$\Vert$
in a domain with $\mbox{$\mathcal S$}\rightarrow\infty$
$=$
in a domain with $\mbox{$\mathcal S$}\rightarrow 0$
$\Box$
in a domain with rectangular horizontal section
$\circ$
in a domain with circular horizontal section
\scalebox{1.414}[0.7071]{$\circ$}
in a domain with elliptic horizontal section
$i$
contravariant component
$j$
contravariant component
$(P)$
poloidal part
$(S)$
scaloidal part
$(T)$
toroidal part

Subscripts

$,ij\ldots$
covariant derivative with respect to $x^i, x^j,\ldots$
$*$
dimensional
$\infty$
fully developed
$\perp$
restricted to a horizontal plane
$\odot$
restricted to a plane of constant $z$
$0$
at the wall $x=0$
$1$
at the wall $x=1$
$A$
species A, the vapour
$B$
species B, the gas
$f$
forced
$i$
Cartesian tensor component
$(i)$
species index in a multicomponent mixture
$j$
Cartesian tensor component
$m$
pertaining to mass transfer or composition
$n$
natural
$r$
at the reference state
$T$
thermal


next up previous contents
Next: Introduction Up: Vapour transport across gas-filled Previous: Preface   Contents
Geordie McBain 2001-01-27