next up previous contents
Next: The narrow cavity limit Up: The Narrow Cavity Limit Previous: Introduction   Contents


The two-dimensional equations

In terms of the Cartesian components of velocity and the normalized coordinates (2.74), the conservation equations for the gas-vapour mixture (2.52)-(2.55) are

$\displaystyle {\frac{\partial u}{\partial X}
+\frac{1}{\mbox{$\mathcal A$}}\fra...
...+\frac{1}{\mbox{$\mathcal S$}}\frac{\partial w}{\partial Z} = 0,}\hspace{-12mm}$
$\displaystyle {\mbox{\textit{Gr}}(1+N)\mbox{\textit{Sc}}\left(u\frac{\partial m...
...ac{w}{\mbox{$\mathcal S$}}\frac{\partial m}{\partial Z}\right) = }\hspace{20mm}$
    $\displaystyle \frac{\partial^2 m}{\partial X^2}
+\frac{1}{\mbox{$\mathcal A$}^2...
...partial Y^2}
+\frac{1}{\mbox{$\mathcal S$}^2}\frac{\partial^2 m}{\partial Z^2},$ (4.2)
$\displaystyle {\mbox{\textit{Gr}}(1+N) \left(u\frac{\partial u}{\partial X}
+\f...
...ac{w}{\mbox{$\mathcal S$}}\frac{\partial u}{\partial Z}\right) = }\hspace{20mm}$
    $\displaystyle -{}\mbox{$\mathcal A$}\frac{\partial p}{\partial X}+\frac{\partia...
...partial Y^2}
+\frac{1}{\mbox{$\mathcal S$}^2}\frac{\partial^2 u}{\partial Z^2},$ (4.3)
$\displaystyle {\mbox{\textit{Gr}}(1+N) \left(u\frac{\partial v}{\partial X}
+\f...
...ac{w}{\mbox{$\mathcal S$}}\frac{\partial v}{\partial Z}\right) = }\hspace{20mm}$
    $\displaystyle -{}\frac{\partial p}{\partial Y}+\frac{T+Nm}{1+N}+\frac{\partial^...
...partial Y^2}
+\frac{1}{\mbox{$\mathcal S$}^2}\frac{\partial^2 v}{\partial Z^2},$ (4.4)
$\displaystyle {\mbox{\textit{Gr}}(1+N) \left(u\frac{\partial w}{\partial X}
+\f...
...ac{w}{\mbox{$\mathcal S$}}\frac{\partial w}{\partial Z}\right) = }\hspace{20mm}$
    $\displaystyle -{}\frac{\mbox{$\mathcal A$}}{\mbox{$\mathcal S$}}\frac{\partial ...
...partial Y^2}
+\frac{1}{\mbox{$\mathcal S$}^2}\frac{\partial^2 w}{\partial Z^2},$ (4.5)

and
$\displaystyle {\mbox{\textit{Gr}}(1+N)\left[\mbox{\textit{Pr}}_r+\mbox{\textit{...
...\frac{w}{\mbox{$\mathcal S$}}\frac{\partial T}{\partial Z}\right)}\hspace{57mm}$
$\displaystyle { - {}\frac{\mbox{\textit{Pr}}_I}{\mbox{\textit{Sc}}}\left(1-\mat...
...c{\partial m}{\partial Z}\frac{\partial T}{\partial Z}\right) = }
\hspace{45mm}$
    $\displaystyle \frac{\partial^2 T}{\partial X^2}
+\frac{1}{\mbox{$\mathcal A$}^2...
...partial Y^2}
+\frac{1}{\mbox{$\mathcal S$}^2}\frac{\partial^2 T}{\partial Z^2}.$ (4.6)

Restricting attention for the moment (until chapter 7) to two dimensions by considering only cavities very extensive in the spanwise direction, in the limit $\mbox{$\mathcal S$}\rightarrow\infty$; the above equations (4.1)-(4.6) become

$\displaystyle \frac{\partial u}{\partial X} +\frac{1}{\mbox{$\mathcal A$}}\frac{\partial v}{\partial Y}$ $\textstyle =$ $\displaystyle 0,$ (4.7)
$\displaystyle \mbox{\textit{Gr}}(1+N)\mbox{\textit{Sc}}\left(u\frac{\partial m}{\partial X} +\frac{v}{\mbox{$\mathcal A$}}\frac{\partial m}{\partial Y}\right)$ $\textstyle =$ $\displaystyle \frac{\partial^2 m}{\partial X^2}
+\frac{1}{\mbox{$\mathcal A$}^2}\frac{\partial^2 m}{\partial Y^2},$ (4.8)
$\displaystyle \mbox{\textit{Gr}}(1+N)\left(u\frac{\partial u}{\partial X} +\frac{v}{\mbox{$\mathcal A$}}\frac{\partial u}{\partial Y}\right)$ $\textstyle =$ $\displaystyle -{}\mbox{$\mathcal A$}\frac{\partial p}{\partial X}$  
    $\displaystyle +\frac{\partial^2 u}{\partial X^2}
+\frac{1}{\mbox{$\mathcal A$}^2}\frac{\partial^2 u}{\partial Y^2},$ (4.9)
$\displaystyle \mbox{\textit{Gr}}(1+N)\left(u\frac{\partial v}{\partial X} +\frac{v}{\mbox{$\mathcal A$}}\frac{\partial v}{\partial Y}\right)$ $\textstyle =$ $\displaystyle -{}\frac{\partial p}{\partial Y} +\frac{T+Nm}{1+N}$  
    $\displaystyle +\frac{\partial^2 v}{\partial X^2}
+\frac{1}{\mbox{$\mathcal A$}^2}\frac{\partial^2 v}{\partial Y^2},$ (4.10)
$\displaystyle \mbox{\textit{Gr}}(1+N)\left(u\frac{\partial w}{\partial X} +\frac{v}{\mbox{$\mathcal A$}}\frac{\partial w}{\partial Y}\right)$ $\textstyle =$ $\displaystyle \frac{\partial^2 w}{\partial X^2}
+\frac{1}{\mbox{$\mathcal A$}^2}\frac{\partial^2 w}{\partial Y^2},$ (4.11)

and
$\displaystyle {\mbox{\textit{Gr}}(1+N)\left[\mbox{\textit{Pr}}_r+\mbox{\textit{...
...frac{v}{\mbox{$\mathcal A$}}\frac{\partial T}{\partial Y}\right)=}\hspace{50mm}$
$\displaystyle {\frac{\mbox{\textit{Pr}}_I}{\mbox{\textit{Sc}}}\left(1-\mathrm{e...
...frac{\partial m}{\partial Y}\frac{\partial T}{\partial Y}
\right)}\hspace{40mm}$
  $\textstyle +$ $\displaystyle \frac{\partial^2 T}{\partial X^2}
+\frac{1}{\mbox{$\mathcal A$}^2}\frac{\partial^2 T}{\partial Y^2}.$ (4.12)

It is seen that apart from (4.11), none of the equations depend on $w$, so that it may be ignored and (4.11) dropped; note that $w=0$ is a solution of the large $\mathcal S$ limit of the spanwise component of the momentum equation (4.11). It may then be assumed that $m,u,v,p$ and $T$ are independent of $Z$, so long as this is consistent with the boundary conditions on all walls with the possible exception of the front and back walls, since these are now ( $\mbox{$\mathcal S$}\rightarrow\infty$) infinitely removed.


next up previous contents
Next: The narrow cavity limit Up: The Narrow Cavity Limit Previous: Introduction   Contents
Geordie McBain 2001-01-27