next up previous contents
Next: Conclusions Up: Spherical enclosures Previous: Flow structure to first   Contents


Overall vapour and energy transfer rates

The definition of the Sherwood number for the cuboid, (6.21), is here modified for the sphere:

\begin{displaymath}
\mbox{\textit{Sh}}= \,\mathrm{sgn}\, x\;\mbox{\boldmath$\hat...
...cdot\mbox{\boldmath$\nabla$}m, \quad (r=\mbox{$\frac{1}{2}$}).
\end{displaymath} (8.76)

The net flux through the hemispherical surface $\{r=1/2, \cos\phi>0\}$ is
\begin{displaymath}
\left(\mbox{$\frac{1}{2}$}\right)^2\int_{-\pi/2}^{\pi/2}\int...
...{\textit{Sh}}\sin\theta
\,\mathrm{d}\theta\,\,\mathrm{d}\phi,
\end{displaymath} (8.77)

which is equal to the net flux through the disk, $\cos\phi=0$ (i.e. the $x=0$ plane) or the other hemispherical surface: $r=1/2,
\cos\phi<0$. The Sherwood number is averaged by dividing the common net flux through these surfaces by the projection of their area in the $yz$-plane,
\begin{displaymath}
\left(\mbox{$\frac{1}{2}$}\right)^2\int_{-\pi/2}^{\pi/2}\int...
...n\theta
\,\mathrm{d}\theta\,\,\mathrm{d}\phi = \frac{\pi}{4};
\end{displaymath} (8.78)

thus
\begin{displaymath}
\overline{\mbox{\textit{Sh}}} = \frac{1}{\pi}\int_{-\pi/2}^{...
...x{\textit{Sh}}\sin\theta \,\mathrm{d}\theta\,\,\mathrm{d}\phi.
\end{displaymath} (8.79)

To first order in Gr,

$\displaystyle \overline{\mbox{\textit{Sh}}}$ $\textstyle \sim$ $\displaystyle \overline{\mbox{\textit{Sh}}_0} + \mbox{\textit{Gr}}(1+N)\overline{\mbox{\textit{Sh}}_1}
+ O(\mbox{\textit{Gr}}^2)$ (8.80)
  $\textstyle \sim$ $\displaystyle 1 + 0 + O(\mbox{\textit{Gr}}^2).$ (8.81)

The first order correction to the mean Sherwood number vanishes because $m_1$ is an odd function of $\phi$. The increased diffusion in the quadrants $xy>0$ is balanced by the lower rate in the other two quadrants. The first order correction to the Sherwood number may also have been expected to vanish from more general symmetry considerations: $\overline{\mbox{\textit{Sh}}}$ should be an even function of $\mbox{\textit{Gr}}$2.6.3).

The results for the energy transfer rate are completely analogous.


next up previous contents
Next: Conclusions Up: Spherical enclosures Previous: Flow structure to first   Contents
Geordie McBain 2001-01-27