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Abstract
We treat natural convection in a plane vertical rectan-

gular cavity with one vertical wall evenly heated, the other
cooled, and an adiabatic floor and ceiling. We predict the
temperature difference across the cavity by simple analy-
sis, and present numerical solutions verifying the results.

If the cavity is infinitely tall, there is an exact steady
one-dimensional solution depending on a single parame-
ter: the stratification. This quantity is not prescribed by
the boundary conditions, but can be determined analyti-
cally from an energy balance on a suitable control volume.
This allows the calculation of the cross-cavity tempera-
ture difference (the Nusselt number–Rayleigh number re-
lation) over the entire laminar range of Rayleigh numbers,
for all Prandtl numbers, and for all sufficiently large as-
pect ratios. The result links the trivial conduction limit to
the Kimura–Bejan boundary layer approximation, which
is also shown to be asymptotically correct.

Numerical solutions verify the conduction–convection
transition for the Nusselt number. They also indicate the
dependence on the parameters of the problem (Rayleigh
and Prandtl numbers) of the bound on the aspect ratio
for the applicability of the approach: that is, the mini-
mum separation of ceiling from floor which permits a fully
developed region.

Introduction
Natural convection in a side-heated vertical rectangu-

lar cavity is one of the classical problems of heat transfer.
Most previous studies [2, 3, 4] have treated the case in
which the vertical walls are held at different fixed uni-
form temperatures; however, a slight variation perhaps
more closely related to some real-world configurations and
possessing several interesting theoretical properties is that
first investigated by Kimura & Bejan [1]: a uniform heat
flux is specified on the vertical walls, positive into the cav-
ity on one side and equal and positive out of the cavity on
the other; see Fig. 1.

In particular, a uniform heat flux is a better model
than a uniform temperature of solar or electrical resistance
heating; a negative uniform heat flux is a good model for
radiative cooling to deep space. The mass transfer ana-
logue also arises in certain electrochemical processes [5].

The interesting properties of the configuration discov-
ered by Kimura & Bejan [1] (KB hereafter) are that, in
the laminar convection regime, the vertical wall boundary
layer thicknesses are uniform, that the core is stagnant and
linearly stratified, and that the temperature on the vertical
walls increases with height at the same rate as it does in
the stably stratified core. This is to be contrasted with the

laminar convection regime in the side-heated cavity with
isothermal walls. There the vertical wall boundary lay-
ers vary in thickness along their length, first drawing then
disgorging fluid. While relatively calm, the core is still in
motion as a result of this entrainment and discharge, and
although generally stably stratified, the core isotherms are
tilted and the vertical core temperature gradient is a com-
plicated function of the flow and heat transfer parameters.
And of course the vertical wall temperatures don’t vary
like that in the core: they’re uniform.
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Fig. 1 Configuration (a); the energy control volume [1, Fig. 2] (b).

Another especially interesting property is that a sim-
ple closed form solution can be found, valid far from both
the floor and ceiling. This goes beyond KB in that the
present solution applies for all Rayleigh and Prandtl num-
bers (provided the resulting laminar solution is stable);
further, the present solution is exact, except in its failure
to satisfy the boundary conditions at the floor and ceil-
ing. In this paper, we derive the one-dimensional solution,
and investigate how well it describes steady laminar two-
dimensional natural convection, as known from specially
obtained numerical solutions.

Formulation
If lengths are scaled with the cavity width, velocities

with the fluid thermal diffusivity over the cavity width,
and temperature differences with the product of the cav-
ity width and the imposed normal temperature gradient,
the dimensionless governing Oberbeck–Boussinesq equa-
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tions are

∇ · u = 0 (1)
1
Pr

Du

Dt
= −∇p + Ra T j + ∇2u (2)

DT

Dt
= ∇2T. (3)

The boundary conditions are that u = 0 on all four walls
while

∂T/∂x = −1 (x = ±1/2) (4)
∂T/∂y = 0 (y = ±A/2). (5)

Since the purely Neumann boundary conditions (4)–(5)
only determine the temperature to within an additive con-
stant, we also require, for example,

∫∫
T dx dy = 0.

One-dimensional solution
Equations (1)–(3) with (4) but not (5) admit a family

of one-dimensional solutions depending on a stratification
parameter s [6]:

u = sinh s(1−2x) sin s(1+2x)−sinh s(1+2x) sin s(1−2x)

16s3(sinh 2s+sin 2s)/Ra
j

(6)

T = cosh s(1−2x) cos s(1+2x)−cosh s(1+2x) cos s(1−2x)

2s(sinh 2s+sin 2s)

+
64s4

Ra
y. (7)

We expect this solution, which is also a special case of one
known to Ostroumov [7, p. 58], to exist over some range
of y between ±A/2, provided A is large enough (so that
there is a region far from both the floor and ceiling) and
Ra small enough (so that the laminar solution is stable).

Apparently unaware of the work of Lietzke [6], KB
simplified the governing equations in three steps: first,
the usual boundary layer approximation; second, assuming
Pr →∞ and dropping the inertial term in (2); and third,
the ‘modified Oseen method’ [8], i.e. the replacement of
nonlinear terms and those with variable coefficients with
constant-coefficient linear terms. They arrived at a solu-
tion equivalent to

v ≈e−s(1+2x) sin s(1 + 2x)− e−s(1−2x) sin s(1− 2x)
16s3/Ra

(8)

T ≈e−s(1+2x) cos s(1 + 2x)− e−s(1−2x) cos s(1− 2x)
2s

+
64s4

Ra
y. (9)

This can be more directly obtained as the s →∞ asymp-
totes of (6) and (7) [9].

Nevertheless, KB’s next step is crucial: integrate the
heat equation (3) over a rectangular control volume en-
closing either the floor or (as shown in Fig. 1 b) the ceiling
of the cavity. Since the energy flux through the cavity
boundary is everywhere prescribed, the integral reduces
to the requirement that the net energy flux through any

horizontal surface cutting the cavity must vanish. If we
assume Lietzke’s one-dimensional solution applies there,
we find

Ra2 =214s9(sinh 2s + sin 2s)2÷
{(sinh 2s + sin 2s) (cosh 2s− cos 2s)
−4s sinh 2s sin 2s} .

(10)

Any non-negative stratification parameter s corresponds
to some non-negative Rayleigh number and so the core
solution is determined for all Pr, Ra, and A, without re-
course to details of the solutions in the floor and ceiling
regions, provided only that the one-dimensional solution
exists at some range of heights.

For large s, the energy balance reduces to [1]

s ∼ Ra2/9/214/9; (11)

and using this, the KB solution (8)–(9) has been experi-
mentally verified in the mass transfer analogue [5].
Two-dimensional numerical solutions

Numerical solutions for the full nonlinear two-
dimensional problem were obtained using two codes:
one based on relaxation of the steady stream-function–
vorticity equations, derived from Naylor’s ENCLREC [4,
pp. 385–403], and the other a transient finite-volume
velocity–pressure scheme [10]. Although the former was
advertised as ‘very simplistic’ [4, p. 398], the present com-
putations are not demanding and it proved adequate. A
sample solution is shown in Fig. 2.

(a) (b)

Fig. 2 Stream-lines (a) and isotherms (b) for natural convection in
an evenly heated and cooled vertical cavity at Ra = 6000, Pr →∞,

and A = 5.

It can be seen that over much of the height of the cavity,
the stream-lines are parallel and vertical and surround a
stagnant stratified core; the isotherms have similar shapes
and appear evenly spaced in y.

All this suggests the existence, for this set of param-
eters, of a region in which the one-dimensional solution
derived above should exist. We expect that such existence
is favoured by larger A, but also anticipate that the least
required A may depend on Ra and Pr. In the following
two sections we investigate the interaction of A and Ra by
examining the difference of the two-dimensional numeri-
cal temperature fields from the one-dimensional analytic
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solution (much as done previously for the isothermal hot-
and-cold wall problem [11]).

Tall cavity regime

Figure 3 demonstrates the ‘tall cavity regime’.

(a) (b)

Fig. 3 Increasing A at fixed Ra = 1000 and Pr = ∞; temperatures,
isotherms each ∆T = 0.1 (a) and discrepancies of temperature from
one-dimensional solution, ±1, 2, 5, 10, 15× 10−2 error contours (b).

For fixed Ra and Pr, increasing A past a certain level sim-
ply extends the section over which the one-dimensional
solution applies; notice that the floor regions are almost
identical. This is an extremely useful result, since it means
that from any such solution, the solution for any other
larger A can be constructed, merely by inserting a longer
one-dimensional region in the middle. This is just as in
the isothermal hot-and-cold wall problem [11, 12].

Increasing Rayleigh number

The situation for increasing Rayleigh number at fixed
A is different, because in the present problem the one-
dimensional solution depends on the Rayleigh number,
whereas for the isothermal case a one-dimensional solution
is only possible with zero stratification: it is essentially the
same as the s → 0 asymptote of (6)–(7):

u =
Ra
24

(4x3 − x) j (12)

T = −x, (13)

with an appropriate redefinition of Ra [2, 3, 12]. The ef-
fect of increasing Ra in the present problem is illustrated
in Fig. 4.

100 200 500 1000 2000 3000 6000

Fig. 4 Change in T with increasing Ra, as marked; A = 5, Pr = ∞.

We see that for small Ra, isotherms are nearly vertical
and heat transfer is dominated by horizontal conduction;
as Ra increases, the ensuing clockwise circulation tilts the
isotherms and sets up a stable stratification in the core.
Nevertheless, across this transition from conduction to
convection, the system remains one-dimensional over most
of the height, as illustrated in Fig. 5.

100 200 500 1000 2000 3000 6000

Fig. 5 Discrepancy from the fully developed temperature;

parameters as in Fig. 4. Contours at ±1, 2, 5, 10, 15× 10−2.

This is very different from the isothermal hot-and-cold
wall case, in which increasing Ra advects ‘floor-effects’ up
into the rest of the cavity, destroying the one-dimensional
regime [12]; in that case, the size of the floor regions like
those illustrated in Fig. 5 only grow with Ra [11, Fig. 5].
Here, this is offset by the increase in stratification with
increasing Ra, which is not incompatible with the vertical
wall boundary conditions (4).
Nusselt number

Define the local Nusselt number as the ratio of the im-
posed heat flux to that corresponding to pure conduction
at the prevailing temperature difference; i.e.

Nu(y) ≡
{

T

(−1
2

, y

)
− T

(
+1
2

, y

)}−1

. (14)

Then, from (7), the fully developed Nusselt number is

NuA=∞ = s
sinh 2s + sin 2s

cosh 2s− cos 2s
; (15)
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the parameter s can be eliminated between (15) and (10)
to give the Nu–Ra heat transfer relation. For extreme s,
this simplifies to

NuA=∞ ∼
{

1 + O(Ra2), Ra → 0;
Ra2/9/214/9, Ra →∞,

(16)

which we take to define the conduction and convection
heat transfer regimes for a tall cavity. The Ra →∞ limit
here is equivalent to the KB result (but without the ap-
parent dependence on A arising from a poor initial choice
of length scale). The analytic and numerical heat transfer
results are compared in Fig. 6.

0.1

1.0

10.0

101 102 103 104 105

M
ID

H
E

IG
H

T
 N

U
S

S
E

LT
 N

U
M

B
E

R
, N

u(
0)

RAYLEIGH NUMBER, Ra

KB, analytical
present, analytical

present, numerical (Pr=∞, A=2)
present, numerical (Pr=∞, A=3/2)

present, numerical (Pr=∞, A=1)

Fig. 6 Heat transfer relation for the evenly heated cavity.

Conclusions
By combining Lietzke’s base solution with Kimura &

Bejan’s energy balance, a solution valid across the entire
range of laminar Rayleigh numbers has been obtained. It
is independent of the Prandtl number, and should apply
for any cavity with tall enough aspect ratio. Numerical so-
lutions have been presented to demonstrate the existence
of such tall cavities.

For tall cavities, the conduction–convection transition
occurs around Ra ≈ 102–104; at higher Rayleigh numbers,
the KB Nusselt formula is entirely adequate.

As far as the midheight Nusselt number is concerned,
even A = 2 is approaching tall, and the shortest tall A
appears to decrease with increasing Rayleigh numbers.

The new formula, resulting from the combination of
Lietzke’s base solution with Kimura & Bejan’s energy bal-
ance, describes the variation of the Nusselt number very
well for A = 2 and Pr = ∞, and would be expected to
perform even better at any higher A.

Further work is required to determine how the min-
imum A for which the theory applies depends on the
Rayleigh and Prandtl numbers. This could take the form
of more numerical solutions, or, following Daniels [12]
for the isothermal hot-and-cold wall case, a study of the

eigenstructure of the governing equations linearized about
the fully developed state; already though it is clear that
whereas there the minimum A increases linearly with Ra,
the behaviour here is complicated by the dependence of
the base solution on Ra.
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