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PLANE POLOIDAL-TOROIDAL DECOMPOSITION OF
DOUBLY PERIODIC VECTOR FIELDS. PART 1.
FIELDS WITH DIVERGENCE
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Abstract

It is shown how to decompose a three-dimensional field periodic in two Cartesian coor-
dinates into five parts, three of which are identically divergence-free and the other two
orthogonal to all divergence-free fields. The three divergence-free parts coincide with the
mean, poloidal and toroidal fields of Schmitt and Wahl; the present work, therefore, extends
their decomposition from divergence-free fields to fields of arbitrary divergence. For the
representation of known and unknown fields, each of the five subspaces is characterised by
both a projection and a scalar representation. Use of Fourier components and wave coor-
dinates reduces poloidal fields to the sum of two-dimensional poloidal fields, and toroidal
fields to the sum of unidirectional toroidal fields.

1. Introduction

The conservation of mass constrains the velocity figld y, z) of an incompressible
fluid to have zero divergence

dvy  dvy 0V,

V.o =
aX ay a0z

The analysis and solution of problems in incompressible fluid mechanics is often
facilitated by using formulations in which this constraint is automatically satisfied.
The best-known examples are the stream-functions for a plane

v(X,y) = =V x {¥ (X, Y)i,} (1.1)
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and axially symmetric flowsl[0, pages 63, 125-126], (here, in geneigis theg-unit
vector)

r (1.2)

Such reformulations are more difficult in three dimensions. For example, deriving
the velocity field from a ‘vector potential’lfl]

v(X,Y¥,2) =V x¥(X,Y, 2 (1.3)

eliminates the incompressibility constraint only by introducing another: that the
vector potential itself is divergence-free. Note that the stream-functiodisli-(1.2)
are unique to within an additive scalar constant (independent of the specified two-
dimensional coordinates in each case) whereas any gradient can be added to the vect
potential in (.3) without changing the velocity. In electrodynamics the ‘magnetic
vector potential’ of the divergence-free magnetic flux density also has a constraint on
its divergence: the Lorentz conditio8, [page 271].

A different approach is the poloidal-toroidal representati§yrppge 622]:

v = (Vx)2Wi,) + V x (i), (1.4)

wherep is the spherical radial coordinate. Encouraged by the success of this formula-
tion in treating divergence-free flows in spherical caviti€3 p5], we are motivated

here to examine the adaptation of the representation to flows in another important
geometry in fluid mechanics: the infinite slot between parallel plane walls. Flows
in this geometry include plane Couette and Poiseuille fibwLp, 21] and Rayleigh-
Bénard P, 20, 24] and Waldmann 14, 28, 22] convection. To avoid some of the
analytical difficulties attending unbounded domains, theoretical and numerical treat-
ments of such flows often employ periodic boundary conditions in the directions
parallel to the wall 19, 23, 24, 26], and in the present work too attention is restricted

to doubly periodic vector fields; namely (takirgas normal, see Figur®

21 2r
= 1.5
VX, Y, 2) =V (X’ y+ kcosy’ 2t ksiny) (1.5)

for all y andz, andx in some interval, sayXo, X;). Doubly periodic (hereafted.p)
fields are also useful in studies of heterogeneous mééja [
The analogue ofl(4) for the slot is the poloidal-toroidal representation

v = (Vx)3(Wiy) + V x (tiy) (1.6)

used by Busse?], Joseph 9, page 235], Moffatt 16, page 21] and Nagatd T];
however, as pointed out by Schmitt and Wétd][ this is incomplete and a mean field
must be added. This essential difference between the planar and spherical cases is
consequence of the ‘hairy-sphere theorefr8]{ any continuous tangent vector field

on a sphere must have a zero, and so, in particular, any constant field vanishes.

v(r.2) = —V x {w(r, 2) ig}.
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FIGURE 1. Standard Cartesian unit vectors, a period cell and periodicity angle

1.1. Scalar and basis representations A scalar representation of a vector fields
an expression of the form= ), L;s, where the_; are linear operators independent
of v and thes are scalar fields. A basis representation of a vector field is an expression
of the formv = ), Ga, where theg; are vector fields independentwfind thec; are
scalar constants depending®nin particular, we are interested in representations for
which divergence-free fields are easily identifiable; for example, because some fixed
subset of the scalass or coefficientsc; vanish.

A familiar and fundamental scalar representation of a vector field is

v = iV + iyvy + 05
however, this may be inconvenient if the divergence is known to vanish.

1.2. Outline of the paper The plan of the present work is to derive consistent
definitions for the poloidal and toroidal parts of d.p. fields, show that they form
orthogonal subspaces, and then add more subspaces to give a complete orthogon
decomposition. For each subspace, the projection and a scalar representation al
derived. General basis representations are not derived, since a good choice her
depends on the nature of the problem under consideration and any approximatior
scheme that might be employed; however, orthonormal bases are presented in th
example of Sectio®.1 for the subspaces of the poloidal and toroidal subspaces that
vanish on the slot walls (corresponding to zero velocity boundary conditions).

The representation derived here, when restricted to divergence-free fields, coincides
with the poloidal-toroidal-mean field representation of Schmitt and W&dj! [The
present representation is not restricted to divergence-free fields, but in it the projection
of a vector field onto the divergence-free subspace is as trivial as projecting a point
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onto thexy-plane in Cartesian geometry.

The derivation is inspired by the work of Backud jpn spherical poloidal and
toroidal vector fields, in that we begin with a Helmholtz decomposition in two di-
mensions (there a spherical surface; here, in Se&@janyz-period cell) and add a
third normal dimension. The present derivation is simplified, however, by the use of
suitably defined inner products and projections as in Neumagisigvelopment of
the geometry of Hilbert space.

2. Doubly periodic plane fields

Though we are primarily interested in three-dimensional vector fields, following
Backus’s [l] procedure for spherical poloidal-toroidal decomposition we begin by
examining d.p. fields independentxf

2.1. Preliminaries

2.1.1. Period cell averages, inner products and nornT® discuss the geometry of
the space of d.p. vector fields, we require an inner prodiitdage 46]. This allows
us to define orthogonality and so to partition the space in a natural and unambiguous
way. Define

42

wherex denotes the complex conjugate. Then the plane average of a scafar a
period cell can be written as

k2siny cosy [2ZF/ksiny  p2r/kcosy
{r, 8o = #/ / r*s dy dz,
0 0

(Slo=(L 8- (2.1)
For vectors{u, v)g = (U - v)g = (Uy, U)o + (Uy, Vy)o + (U, v7)0.

2.1.2. Projections Corresponding to each subspace of an inner product space is
its orthogonal complement and its projection. Orthogonal sets of projections will be
our principal tool in decomposing vector fields. An operator P is a projector if it is
idempotent (Pf = Pf) and Hermitian 27, page 77]

(f.Pg) = (Pf,g)

(or equivalently(f, Pg) = (Pf, Pg)) for all f andg in the space.

Two projections are orthogonal if PQ= QPf = 0 for all f. The identity
operator 1 is a projector, and so is the complem@nt P) of any projector. Every
projection is orthogonal to its complement.

Note that the scalar period cell averagelj is idempotent and Hermitian, and so
is a projection on the space of plane d.p. scalar fields.
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2.1.3. Plane differential operatorsBackus [l] based his exposition of spherical
poloidal and toroidal vector fields on certain differential operators defined on spherical
surfaces. Here we introduce their plane analogues: the plane gradient of a scalar fiels
and the plane divergence of a vector field

0s. 0s. dvy  dv,
Vos= —iy+ —i, and Vg-v=—+ —
ay a0z ay 0z
and the plane curls of scalars and vectors
0s. 0S. 0 0
As=——i,+ —i, and Av=22 0%
a0z ay ay 0z

In hydrodynamicsA v gives a velocity field in the/z-plane from its stream-function
[10, page 63] and\ - v gives the normali{) component of vorticity 10, page 31] of
the velocity fieldv.
The plane Laplacian of a scalar field is
9°s  93°s
2

= — — =V5-Vgs=A-AS, 2.2
8y+322 o o (2.2)

but the other combinations vanish:

VEs

2
m}

VD . AS = A . VDS = O. (2.3)

Some other useful identities for d.p. scalar and vector fields are:

(S, Vo - v)g = —(Vgas, v)q, (2.4)

(S, A -v)g = —(AS, v), (2.5)

(s, VAt)g = —(VS, V), = —(As, At), = (V2s, t), and (2.6)
(Vgs, At)y = 0. (2.7)

Equation R.7) is analogous to (46b) of Backug][for spheres; it is essential for the
plane Helmholtz decomposition (Secti@ar?, below).

2.1.4. Trigonometric basis for scalar fieldsThe scalar fields
e = exp{«/—lk(lyyCOS]/ + Izzsiny)} (2.8)

(where the subscrigtstands for a pair of integelgandl,) form an orthonormal basis
for the inner product space of d.p. scalar fields defined in a plane of corsthat is,

1, £=m;

Se = -
(€. €} {0, otherwise
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27r/ksm’y
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@l =ly. ()1, = 2,.
FIGURE 2. Wave Cartesian coordinatdsdndy as in Figurel.) Forl, = 0, see Figurd, since then

ne=yandg, =z

Afield s with [|s]|, = (s, 5)* < oo can be expanded in a Fourier series

s(y.2) =) (e.s Z Z (€, s (2.9)
£ y= 2=

which converges in the norm. Here and elsewhergwill be written to denote a
summation over all integer valueslgfandl.,.

2.1.5. Wave coordinatesManipulation of the trigonometric basis functions is
facilitated by the introduction of the Cartesian ‘wave coordinates’

ne|l | cosBe  sinB ||y

| |—sing, cosp||z]|’
where the wave anglg, is defined by, cosg, = kl, cosy, «, sing, = kl,siny and
ke = k(1Zcog y +12sir? )%, Their unit vectors

2 = Vone = cosp, iy +sinp,i, and
& = VD;Z = AT)@ = — Sinﬂg iy + COSﬂgiz

are the standard Cartesian unit vectors rotated thr@adbee Figure?). This trans-
formation is essentially that used by Squi2é€][in his reduction to two dimensions of

the equations governing infinitesimal three-dimensional disturbances to parallel sheal
flow.
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The trigonometric basis functiong.8) become

€ = exr(\/ —lKeT)z) (210)
and their derivatives are
V[]ee =V —lKeegim, (211)
Ae =V —1k,&i, and (2.12)
Véee = —Ktzee.

2.1.6. Poisson equation in the plando deal with the orthogonal projections
partitioning the space of plane d.p. vector fields in Secfich we require some
results P3] on the Poisson equation

V2u = —f, (2.13)

where bothu and f are d.p. Taking the inner product of both sides 2fL@) with a
trigonometric basis functiog, (2.10) givesk; (e, u), = (&, f),. Thus, provided

(&, f)a=(f)a =0, (2.14)

a d.p. solution ofZ.13 is

u=-v2f =Y ' Xe foe, (2.15)
£

a prime being inserte€y",) when the term for which, = I, = 0 is to be omitted

from the summation. While any functian+ const. is also a d.p. solution d?.(L3),

(2.19 is the only one with zero mean over the period cell. This follows fr@mg)(

with s = t equal to the difference of two zero-mean solutions. In gené&tat,is

only a pseudoinverse; however, it is a true inverse if restricted to the subspace definec
by (2.14), which will suffice here.

2.2. Helmholtz decomposition in the plane We are now ready to show that the
space of plane doubly periodic vector fields (that is, those for whick 0) can be
decomposed into three orthogonal subspaces: mean fig¢ldsplane gradients?y

and plane curls7;. This is analogous to the Helmholtz decomposition in spa6g [
page 208]. Each subspace is defined by a projector. Two of the projectors are definet
as differential operators, so for nondifferentiable fields they should be understood as
applying termwise to the Fourier expansi@nd via (2.11) or (2.12). Specifically,

Pﬂgv = (vy)Di + (v)aiy,
Poyv=V_V3?V,-v and
Pz, v = AV;°A - v.
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The pseudoinverse Laplacians are well defirizd4), by (2.4—(2.5).

That each P is idempotent and Hermitian and that they are mutually orthogonal
are straightforward consequences of the definitions and rules of Se2tibis?.1.3
particularly .2—(2.7). Completeness follows from consideration of the expansion

o)

where (forl, andl, not both zero) Rv = (&, v,,)a&i, + (&, v;,)o&i, and the
results

P‘///EI PgDv = PZD P,i/[]v = O,
P2 Piyv = Py Poyv = (&, v,)n&i, and

Py[] PgDv = PZD Py[]v = <ez, Ué—)geeiz;l

which imply (P‘/”EI +Pog + PyD)PfD = Py (P///D + Poy + Pﬁ:l) = Py

3. Doubly periodic space fields

3.1. Preliminaries

3.1.1. Space inner products and averagékhe inner products and averages of
Section2.1.1can be extended to three-dimensiogalperiodic fields L9, Eq. 12]:

r,s) = (x— X0)1/ (r, s)o dx
Xo
(s) =(1,s) and
(U, v) = (U-v) = (Ux, vx) + (Uy, vy) + (U, V7).
3.1.2. Space Poisson equatioi\s in the planar case, some of the projections

partitioning the space of space d.p. vector fields require the solution of a Poisson
equation. For d.pu, f, by andb,, consider

Viu=-f and (3.1)
ulx:x‘ - bi (yv Z) s (l = 0’ l) (32)
of Dl =b(y,2, (=01 (3.3)

(where D= 9/0x) and where

(UWo = (f)a = (bo)o = (b1)o = 0. (3.4)
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TABLE 1. Tripartite decomposition of d.p. vector fields.

Space Projection Scalar representation
M Psv = (v)aix + Py m = Uiy + Viy + Wi,, where
VoU = VgV = VW =0
g = —riy — VgS, where

2 Pov = (v — (vx)o)ix + PQDv

MNa=()a=0
T Psv =Py, v t=—A1t =V x (tiy), where
<T o — 0

Either Dirichlet 8.2) or Neumann3.3) end conditions with the zero plane meaBsl)
renders the solution of the space Poisson equadidhnique, as follows from Green’s
identity

. Dt), Ds, t), |
M = —(Vs, Vt) = (V3s, 1) _w

(s, V?t) —
X1 — Xo X1 — Xo

with s = t equal to the difference of two solutions.
The Fourier components fdr # 0 (the plane mean component vanishes) of the
solution of 3.1) are
Ge(§) = {Ce(H(E — X)ve(X), fe) + BocJwe(€)
+{CHX = EHwe), fo) + buefve(®),

wheref, = (g, ), (etc) andH is Heaviside’s step function.
For Dirichlet end conditions3(2)

. SinhK’g(Xl— Xo)

Co=——"7—"7"—.
Kq
Sinth(X—Xo) Sinth(Xl—X)
= —_— d -
ve(X) Sinth(Xl—Xo) an we(X) Sinth(X]_—Xo) ’

while for Neumann end condition8.Q)

Ci=—xy Sinth(Xl — Xop),
vy = TEOMXZX0) () = — SO =)
Ky Slnth(X]_ — Xop) Ky Slnhl(g(xl — Xo)

3.2. Atripartite decomposition of d.p. vector fields The Helmholtz decomposition
of d.p. plane vector fields (Secti@?) can be extended to vector fields with nonzero
normal ) components as in Table We call the three subspace®an(.#), quasi-
poloidal (2) andtoroidal (7). The completeness and orthogonality of this tripartite
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decomposition follows from that of the plane Helmholtz decomposition and the simple

treatment of the normal components along with the planarity of the operators involved.
Table 1 also gives a scalar representation for the general member of each subspace
along with the conditions under which the scalars are unique. In each case, the
definitions by the projection and scalar representation are equivalent.

3.2.1. Divergence in the tripartite decompositioif V-v = 0, thenVg-v = —Duy
and Dvy)o = 0 by (2.4) and the quasipoloidal projection reduces to

Pov = (vx — (vx>|3)ix + vaazDvx
= —V2Wi, + V_ DV = (Vx)*(¥iy),

say, with Véw = (w)y — Ux, Which is the same as Equation (7) of Schmitt and
Wahl [23] (for divergence-free d.p. fields). They applied a tripartite decomposition
equivalent to B, + Po + P to divergence-free fields, calling the three pantsan
poloidal andtoroidal. The divergences of these projections of an arbitrary d.p. field
are

V.-P v =D(v), =(V-v)q, (3.5)
V -Pov=D(vy — (v)g) + Vag-v=V-v—(V-v); and (3.6)
V- -Psv=0. (3.7)

Thus, if restricted to divergence-free fields, the tripartite decomposition produces only
divergence-free projections.

4. Quinquepartite decomposition

The Schmitt-Wahl decomposition is adequate for divergence-free fields, but two of
the three projections involved are not divergence-free for arbitrary vector fields, and
so do not permit the definition of, for example, the poloidal part of a field. This is
evident from 8.5) and @.6).

Here the mean# and quasipoloidal? subspaces are partitioned with the result
that the space of d.p. vector fields can be decomposed into three mutually orthogona
divergence-free subspaces (those of Schmitt and Wahl), and two subspaces orthogon
to each other and to each of the divergence-free subspaces. It is unnecessary t
partition .7, since by 8.7), all its elements are divergence-free. To decompase
and 2, we find the condition characterising divergence-free elements, and then the
condition characterising elements orthogonal to all such. Thus

B={b:be.#,V-b=0}, N =M — B,
P ={p:pe2,V-p=0}, S =2 L. (4.2)
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TABLE 2. Quinquepartite decomposition of d.p. vector fields.

Space Projection Scalar representation
4 Pzv = (vy)ix + (vy)aiy + (v2)ai, b= Uiy + Viy + Wi,
VU =VoV =V ;W=0
A Puyv = (0o — (vx)ix n = Niy
VuN=0,(N)=0
P Psv = —V2Wi, + VoD¥, where p=—VaWiy + V,D¥
V2 = — (v — (vx)n) + DVEZVD v (W)a=0
(Y)a=0

DY =V3?Vg-v (X=X, X1)

54 Psv = —Vo, where s=—-Vo
Vio = —=(V-v—(V-0v)n) (0)g =
()n=0 oc=0 (X=X, X1)
oc=0 (X=X, X1)

T P»v = —At, where t=—At
T=-V3?A-v (t)s =0

The subspace” is calledscaloidalby analogy with usage for the spherical ca&d].
The subspacet” contains only no-mean normal fields.

The resulting five subspaces are listed in Tahleln each case, the projection

given in Table2 is the only one compatible with the given definition of its space.
In particular, the boundary conditions on the Poisson equations for the poloidal and
scaloidal projections had to be so chosen to ensure that the projection was indee
idempotent and Hermitian, and that all divergence-free quasipoloidal fields were
poloidal.

The table also lists scalar representations of general members of each space; in eac
case, definition of the space as the collection of all possible fields having the given
representation is equivalent to the original definition; further, the scalars are unique.

General solutions of the space Poisson equations in the poloidal and scaloidal
projections were given in Sectidhl1.2 Note that ifV - v = 0, the space Poisson
equation for the poloidal projection reduces to

VA = —V?V % (v — (0)g), D¥ = —DV*(vx — (vx)g), (X = Xo, X0),

so that¥ = —V32(vx — (vx)n) and the projection reduces again to that of Schmitt
and Wahl 3, Eq. 7], as in Sectio8.2.1

4.1. Proof for the scaloidal subspace The methods used to prove the statements in
Table?2 are similar for each space, so only the proof for scaloidal space is given here.

PROOF. We prove first that the projectionsPis Hermitian and then second that
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defined by 4.1), .”" defined as the class of fields with the given scalar representation,
and.” defined by the given projection are equivalent, thatf8,C " C .%¥ C .9,
That P, = P., follows from the second part of the proof.

First, P, is Hermitian, since ib- andt are the scaloidal scalars for arbitrary d.p.

fieldsv andw, (Py,v,w) = —(Vo,w) = (Vo, V1) = (P»Vv, Pow). We have twice
used the condition that vanishes at the ends= Xo, X;.

Second,
Q) ve . C 2impliesv = —riy — Vgs where(r)g = (s)g = 0. To prove

v € .¢", we use the fact that € .7 1L & implies Pv = 0. In particular,
ix - Pov = —V2W¥ = 0. Therefore, by the uniqueness result of Secfidng ¥ =0
where

V20 = —(vx — (vy)5) + DVZV, - v
= —(—r — (=1);) +DV;%V, - (-V,S) = —r —Ds
and atx = X andx;, D¥ = V3%V, - (—V;S) = —s. Thuss(Xy) = s(x;) = 0 and
r = Ds, thatis,y = —Ds — Vgs = —Vs. Therefore?” € .".
(2) For the typical element o, P (—Vo) = —Vswhere
V3s=—(=V-Vo +(V-Vo)r)
= V20 — (D) — (V30)y = V?%0 —0— 0= V70,
(S)g = 0 = (0)gy ands(Xy) = s(x1) = 0 = o(X9) = o(Xy). Therefore, by the
uniqueness result of Sectidhl.2 s = o and P»(—Vo) = —Vs = —Voa. Thus
" € .. (This also proves that fis idempotent.)

(3) For arbitrary d.pv, P»v = —Vo where(o); = 0 ando (Xo) = o(X;) = 0.
Then

PoPyv = —Doiy — Voo = —Vo =Py
s0.¥ € 2. Also P»Pyv = —V2Wiy + V;D¥ where
V2@ = —Do + DV;%V, - (=Vg0) =0,
()g =0, and atx = Xg andXx = Xq,
DY = V;?Vy - (—Vgo) = —0 =0.

Therefore, by the uniqueness result of Sec8dh2 ¥ = 0 and R,P., = 0, that is,
S 1L Zandy C ..

The scalar representation (Taldg of a scaloidal field is unique. Say € .%¥ =
—Vo = —-Vsand{o)g = (s)g = 0. ThenV(s—o) =0sothas—o = (S—0)g =
(S)g — (0)g =0, thatis,s = 0. O
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4.2. Quinquepartite Fourier decomposition The Fourier projections
Pev = (&, vx)n€ix + (€, v, )€y, + (€, Vg, ) o€,
commute with each of P, Py, P, P» and P». Forl, =1, =0
PPy =P,P,=P, and RPyg=P4P, =Py

while R, is orthogonal to each of §, P4 and P (indeed B = P ;). For nonzerd,
P, is orthogonal to B- and P, while

va = PgPy'U = PyPg'U = —Dggegix — A —1/c¢5¢e¢im, (42)
Po,v = PPyv = PyPo = k2W,eiy + v/ —1,D¥eii,, and (4.3)
Pg;v = PngU = PngU = — —1/(¢?¢e¢ia. (44)

Thus each Fourier-scaloida#.@) and Fourier-poloidal4.3) component field is
parallel, and each Fourier-toroidal component fiéld) normal, to thexn,-plane. All
three types of Fourier component field are two dimensional, being independgnt of
andn,-periodic, depending on, only via g, (2.10. A Fourier-poloidal component
can also be written as

A ~

Pgal‘l) = (—IX— + IWD> (\/ —1/c¢lI/¢e¢) s
ane

so that the expression in the second pair of parentheses is a stream-functignifor P

in the xn,-plane.

5. Discussion and conclusions

5.1. Example: divergence-free field vanishing onx| = 1 As an example of
the quinquepartite decomposition of a d.p. divergence-free vector field, consider a
velocity field for an incompressible fluid between the walls —1 andx = 1. The
field v vanishes on the walls.
This implies that the poloidal scalar for the field vanishes along witkrdsrivative
at the walls. The monomiakx"}2, form a basis for functions of on (-1, 1), and
{(1 — x?)2x"}22, for the subspace of functions vanishing along with their derivatives
at the end points. Recalling][that the ultraspherical polynomia® satisfy

! 0, ;
(1— X2)afl/zc(a)(x)c(a)(x) dx = n#m
1 " m h@, n=m,
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where

he — 2527 (n + 2a)
" nin+a) (T@)?’

we find that an orthonormal basis for this subspace is

(1—x%?
/her

Stream-lines of real parts of a few poloidal fields of the faivhx)2(p,e&iy) with
smalln and¢ are illustrated in Figur8.

For the toroidal fields, the end conditiai+1) = O implies onlyz(£1) = 0, so
that an orthonormal basis again consists of weighted ultraspherical polynomials but
with o = 5/2:

Pn(X) = C92(x).

1— 2
th(X) = —Xc<5/2>(x)

/hl<15/2> n

(see, for example 1P, Eq. 44], noting tha€C® = P~1/2«=1/2 'wherep*~1/2e=1/2
are Jacobi polynomials). The stream-lines are simply lines of constamid ,,
so some toroidal fields are illustrated in Figurdy velocity contours in planes of
constant;.

The vector modes of this section are equivalent to some used previdigly [
however, being expressed in regular Cartesian coordinates has obscured their sim
ple geometrical properties, namely the two-dimensionality of the poloidal modes
and the unidirectionality of the toroidal modes. This is just as the special three-
dimensional significance of two-dimensional solutions of the Orr-Sommerfeld equa-
tion [5, page 155] only becomes evident after Squire’s transforma#iéh [

5.2. Further properties of the decomposition Figure4 bears a certain resemblance

to the first row of Figur&. Thisis notan accident. Itis has been proven elsewhigie |
that if a three-dimensional velocity field has zero gradient in some direction then the
component of velocity in that direction is constant along vortex-lines (curves parallel
to the curl of the velocity). And, indeed, the curl of any toroidal field is poloidal.

THEOREM5.1. V x 7 = &,
PrROOF. The curl of a typical toroidal element (Talit is
V x (=At) = —VZ3tiy + VD1

which is the most general form of a poloidal field (TaB)e O
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D)

i

=

FIGURE 3. Stream-lines of poloidal fields with stream-functiong, p,(X) sink,n,. Herel, = 0,1,2

by row andn = 0, 1,2 by column;l, = 1 in all; k andy as in Figuresl and2. Only stream-lines
corresponding to ‘positive’ rolls of a single period cell are shown; counterrotating rolls are symmetrically
disposed. Stream-lines lie in the plarggs= 0, = cosp,/k siny, 2 cosp, /k siny, as marked by solid
lines. Dashes mark boundaries of typperiod cells andx| = 1.



36 G. D. McBain [16]

FIGURE 4. Contours of constant velocity of three toroidal fielas= 0, 1,2;1, = 1 andl, = 0 in all;
projection and periodicityk(andy) as in Figured-3.

For the other subspaces the corresponding results are:

V x Pypv=—AVW € 7, (5.1)
V x Pgv = —D(v,)nly + D(vy)ni, € A,
VxPyv=0 and VxP,v=0.

Theorem5.1 and 6.1) are analogous to known results for spherical poloidal and
toroidal fields B, page 623]. That the divergence-free subspagesnd .4 are
irrotational shows the relation to the Helmholtz decomposition; note, however, that
there are nonzero irrotational membersZ@fand %, for example,

p = (Vx)%{iy coshkxcosy) cogkycosy)}

is an irrotational poloidal field, and any uniform vector field is an irrotational member
of 4.

5.3. Conclusion The result of the analysis is a decomposition of the space of
arbitrary three-dimensional d.p. vector fields into five subspaces: three divergence-
free, coinciding with those of Schmitt and WaRB], and two orthogonal to these and
each other.

Further, one each of these groups of three and two contains only elements constar
in the two periodic directions; these two are the ‘mean’ subspaces. Of the three
nonmean subspaces, the Fourier decomposition reduces two to the sum of subspac:
containing only two-dimensional vector fields (that is, having two nonzero components
and independent of the third coordinate in an appropriately rotated Cartesian system
and the other to the sum of subspaces containing only divergence-free unidirectional
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fields. This reduction of a three-dimensional field to a series of two-dimensional fields
should simplify the analysis and solution of three-dimensional vector field problems.

Each of the five subspaces are characterised both by projections and by scala
representations. In the solution of problems, these should be useful for the reduction
of known and unknown vector fields, respectively.
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