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The equations governing the velocity u and
pressure P in natural convection in Newtonian
fluids with small temperature differences (of
scale R) were derived by Oberbeck (1879). In
dimensionless form:
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∇ · u = 0. (3)

Here we work not with the temperature but
with its difference T from a reference stable
stratification with gradient 2m4/σR. Fluids
are distinguished by the Prandtl number σ
(≈ 0.7 for air and 7 for water) and ̂ is the
unit vector in the y or vertical direction.

It is convenient to split the velocity into
mean and disturbance parts and, for two-
dimensional problems, to represent the veloc-
ity disturbance by a stream-function (Stuart,
1958), and similarly for the temperature:
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T = Θ(x) + θ(x, y) (5)

where ψ and θ have zero vertical mean: e.g.
Θ =

∫

Tdy. If U is uniform and V = V (x),
mass conservation (3) is automatic.

Steady solutions with U = 0 and indepen-
dent of y are governed by (Ostroumov, 1958,
p. 56)

V ′′(x) = −2Θ(x) (6)

Θ′′(x) = 2m4V (x) (7)

ψ = θ = 0 (8)

and include form = 0, V (±1) = 0,Θ(±1) = ∓1

V (x) = (x3 − x)/3 (9)

Θ(x) = −x (10)

(Waldmann, 1938); for m > 0, V (±1) =

0,Θ(±1) = ∓1

V (x) = {sinhm(1 − x) sinm(1 + x) (11)

− sinhm(1 + x) sinm(1 − x)} /m2d

Θ(x) = {coshm(1 − x) cosm(1 + x) (12)

− coshm(1 + x) cosm(1 − x)} /d

where d = cosh 2m−cos 2m (Ostroumov, 1958,
p. 57); and for m > 0, V (0) = 0,Θ(0) =
1, V (∞) → 0,Θ(∞) → 0

V (x) = e−x sinx (13)

Θ(x) = e−x cos x (14)

(Prandtl, 1952, pp. 422–425). In the last case,
the half-space has one less length scale than the
slot so that m is disposable. The three base
solutions are illustrated in figure 1.
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Figure 1: Steady vertical natural convection
velocity (a–c) and temperature (d–f ) for un-
stratified slot (a, d), stratified slot with m = 5
(b, e), and stratified half-space (c–f ).

The Waldmann (9–10) and Prandtl (13–14)
solutions can be considered as the m → 0 and
m → ∞ limits of the stratified slot solution
(12–13), with an appropriate rescaling of x in
the latter case.

For small disturbances, the equations for ψ
and θ have coefficients independent of t and y
so that they can be expanded in normal modes
(Drazin and Reid, 1981, p. 11); products of
exp{iα(y − ct)} and functions of x, where α
is the (real) wavenumber and c the (complex)
wave speed. The equations

[(αR)−1(α2 −D2)2 − {V (α2 −D2) + V ′′}]ψ

+ 2i(αR)−1Dθ = −c(α2 −D2)ψ (15)

[iσΘ′ + 2m4(αR)−1D]ψ

+ [iσV + (αR)−1(α2 −D2)]θ = iσcθ (16)



with boundary conditions ψ = ψ′ = θ = 0,
where D ≡ d/dx, were derived by Gill and
Davey (1969).

Studies of the linear stability of the three
base solutions began with Gershuni (1953),
Birikh et al. (1969), and Gill and Davey (1969),
respectively.

Since the three base solutions are each in-
dependent of y, the temperature derivative at
the walls, and therefore the heat flux, is too.
This means that the same solutions apply to
the case of uniform heat flux; apart from Li-
etzke (1955), this appears to have been little
appreciated. It is significant because the fixed
temperature condition in the stratified cases
implies a wall temperature increasing linearly
with height, which seems unnatural and diffi-
cult to impose in an experiment. While the
base solutions are unchanged, the stability be-
haviour, particularly for ‘thermal’ modes is dif-
ferent; the thermal boundary condition being
replaced with θ′ = 0.

Equations (15)–(16) were discretized by an
interior collocation method (Villadsen and
Stewart, 1967), leading to a generalized alge-
braic eigenvalue problem of the form Lq = cMq.
Taking care to only impose the no-slip condi-
tion ψ′ = 0 on the viscous operator (α2−D2)2,
the ‘mass matrix’ M is nonsingular and spu-
rious eigenvalues are avoided (Weideman and
Reddy, 2000). Thus, Lq = cMq can be replaced
by the standard algebraic eigenvalue problem
M

−1
Lq = cq and solved by, e.g., the QR algo-

rithm (Watkins, 2000).

For given α and R, stability requires that
the spectrum of c lies in the lower half complex
plane (Drazin and Reid, 1981, p. 11). Marginal
stability curves (tracked by the adaptive skirt-
ing algorithm of McBain 2003) for the stratified
half-space are presented in figure 2 for σ = 0.7
and 7, and Dirichlet (θ = 0) and Neumann
(θ′ = 0) conditions. In all four cases the mar-
gins have two lobes, caused by the competition
of two modes of instability: the ‘hydrodynamic’
(higher wavenumber) and ‘thermal’ (lower α).
The latter are much more sensitive to σ. The
Dirichlet results agree with those of Gill and
Davey (1969). At both Prandtl numbers the
loss of the stabilizing effect of wall conduction
in changing from Dirichlet to Neumann is ev-
ident in the shift of the thermal lobe of each

 0.4

 0.8

 100  200  300  400

W
A

V
E

N
U

M
B

E
R

, α

REYNOLDS NUMBER, R

σ=0.7
7.0

(a)

 0.4

 0.8

 100  200  300  400

W
A

V
E

N
U

M
B

E
R

, α

REYNOLDS NUMBER, R

σ=0.7
7.0

(b)

Figure 2: Marginal stability curves for half
space with (a) Dirichlet and (b) Neumann ther-
mal boundary condition.

marginal curve to the left: the effect being par-
ticularly pronounced for σ = 0.7.
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